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ABSTRACT 

 

 Water is vital to man and its quality it a serious topic of concern.  Addressing 

sustainability issues requires new understanding of water quality and water transport.  

Past research in hydrology has focused primarily on physics-based models to explain 

hydrological transport and water quality processes. The widespread use of in situ 

hydrological instrumentation has provided researchers a wealth of data to use for analysis 

and therefore use of data mining for data-driven modeling is warranted.  In fact, this 

relatively new field of hydroinformatics makes use of the vast data collection and 

communication networks that are prevalent in the field of hydrology.     

 In this Thesis, a data-driven approach for analyzing water quality is introduced. 

Improvements in the data collection of information system allow collection of large 

volumes of data. Although improvements in data collection systems have given 

researchers sufficient information about various systems, they must be used in 

conjunction with novel data-mining algorithms to build models and recognize patterns in 

large data sets.  Since the mid 1990’s, data mining has been successful used for model 

extraction and describing various phenomena of interest.  
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CHAPTER 1. 

INTRODUCTION 

 

The availability of quality water is a concern, and human-environment 

interactions still leave much to be understood.  Knowledge about water transport, quality, 

and quantity awaits further discovery.  Water quality has high variance from location to 

location and time to time, due to its sensitivity to both chemistry (i.e. nutrient loading), 

and transport (i.e. stream flow).   Both human activity such as the application of 

fertilizers and land management practices, and meteorology play a strong role in water 

quality.  

Accurate water quality prediction would provide us with a better understanding of 

the human influence on aquatic life and provide knowledge for intelligent decision 

making in regards to ecological conservation.  In the past, physics and chemistry-based 

models were used to model water quality and the transport of nutrients.  Due to sources 

of error in measurement, misunderstanding of hydrological systems, and errors in 

modeling building/approximation, the results of such models leaves much for 

improvement.  Data driven techniques can eliminate some of these sources of error 

because they do not require a strong physical understanding of the system to be modeled.  

Data is used directly for model building, not for validation of a theoretical physical 

concept.   
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1.1. Physics-based modeling approaches in water quality 

 Numerous efforts to model water quality have been made by research 

communities such as the United States Geological Survey (USGS) and the United States 

Department of Agriculture (USDA).  For example, the Soil Water Assessment Tool 

(SWAT) model was developed by the USDA’s Agricultural Research Service (ARS) to 

predict the impact of land management practices on water and agriculture resources [2].  

The Environmental Protection Agency (EPA) and the United States Department of 

Agriculture (USDA) are active in building physical models to tackle water quality 

estimation and prediction.  Some of the EPA’s products are AQUATOX, a freshwater 

ecosystem model, CORMIX, a hydrological mixing model, and QUAL2K, river and 

stream water quality models.  It is difficult to separate water quality from hydrology, as it 

is as strongly impacted by water transport as it is water chemistry.  For this reason, water 

quality models are often derived from the classical Navier-Stokes equations of fluid 

dynamics [3,4]. 

 With the recent deployment of in situ instrumentation in rivers, streams, and 

creeks nationwide, as well as real-time data reporting via satellite communication 

technology, a wealth of data is available that had never before in the past.  Data mining 

can utilize this vast base of data for pattern recognition and machine learning, so as to 

make accurate predictions.        
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1.2. Data-driven modeling approaches in water quality 

 Data mining makes models from the “ground up” rather than using the traditional 

top-down approach of its physics-based counterpart.  As data-driven models are derived 

directly from the data, their accuracy is unparalleled by physics-based models.  Several 

data-driven methods have been used, such as fuzzy logic [5, 6] for lake eutrophication 

modeling, support vector machine regression for hydrological model approximation [7] 

and river discharge modeling [8], with the MLP, also known as the neural network (NN)  

being the most preferred.  

 Previous work has applied MLPs to both water quality and water quantity.  Palani 

et al. (2008) applied neural networks (NNs) to model seawater temperature, salinity, and 

chlorophyll (Chl-a) concentrations at time t and also forecast seawater temperature one 

week ahead [9].  Sérodes et al. (2001) forecasted the residual chlorine in drinking water 

of the city of Sainte-Foy, using the parameters chlorine dosage, residual chlorine 

concentrations, temperature, and flow rate [10].  Sahoo used regression analysis, NNs, 

and Chaotic Non-Linear Dynamic Models to forecast stream water temperature [11]. The 

ANN has also been used to approximate the output of a hydrological model, the Soil and 

Water Assessment Tool (SWAT) [12].  

     Data driven approaches have also been applied to water quantity and flood 

prediction.  Choy and Chan used a support vector neural network (SVNN) was used to 

predict the discharge of the Fuji River in Japan, so as to provide an early warning for 

inhabitants in the case of a heavy rain event [8].  Damle and Yalcin (2007), in their study 

of a St. Louis gauging station on the Mississippi River focused on daily discharge values 
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from 1933 to 2003 for discharge prediction [13].  Dibike and Solomatine forecasted river 

flow and modeled the looped rating curve by way of NNs [14].  Willby et al. attempted to 

extract knowledge of the physical system from NNs built to model rainfall-runoff [15].  

 In order to achieve high accuracy water quantity estimation, high spatiotemporal 

resolution precipitation data is highly desirable.  There have been a few efforts to utilize 

data-driven modeling for precipitation estimation via NEXRAD radar data.  There have 

been fewer attempts to make this link between radar data and tipping bucket data with 

data-driven techniques.  Feed forward neural network (FFNN) have applied for rainfall 

estimation using radar reflectivity and rain gauge data [16,17].  Trafalis et al. considered 

some different parameters, such as wind speed and bandwidth to complement reflectivity, 

but with unimproved results.  The best performing models in the study all had MSE’s less 

than 0.1mm/hr [18].  Liu et al. (built a recursive NN with a radial basis function (RBF) 

that would continuously update its training data set with time.  The architecture of such 

neural networks has also been experimented with improved results [19].   

 

1.3. The multilayer perceptron (MLP) 

 As the algorithm used throughout this Thesis is the multilayer perceptron (MLP), 

otherwise known as neural network (NN) or artificial neural network (ANN), an in depth 

algorithm description is justified.  It has found widespread success in many areas other 

than hydrology due to its ability to model noisy data and usefulness for both classification 

and regression.  This section should provide insight to one of the machine learning 

algorithms that has been so widely labeled a “black box” model.   



www.manaraa.com

5 

 

 

 

1.3.1. MLP overview 

 The MLPs applied in this research are feed forward backwardly propagating 

neural networks.  The MLP’s structure consists of nodes in an input layer, a hidden 

layer(s), and an output layer.  The concept was biologically inspired to represent the 

human brain’s ability to process in parallel, to learn from experience, and to be highly 

connective and modifiable.  The brain also operates via supervised learning, or the ability 

to train itself and learn from past experiences.  The brain has the ability both to feed 

connections forward, near sensory input, and feed connections backwards near sensory 

input.  These connections are mimicked by the NN with the use of loops.  Feed forward 

NNs do not have loops, while in a looping, or recurrent NN, information is fed back from 

an output node to an input node [20-22].  In both categories of NNs, each input/output 

parameter is assigned a node in its respective input/output layer.   

 

1.3.2. The MLP structure and algorithm 

 Figure 1.1 is a diagram of a single perceptron with two inputs, and a simple 

binary output.  The inputs are multiplied by their respective weights and the products are 

summed at the junction.  If the sum at the junction is greater than the threshold (Θ), the 

perceptron “fires.”  In the binary example, firing means outputting a “1.”  Equation (1.1) 

describes the summation that occurs at the node.   
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Figure 1.1. Perceptron 

 

     (∑       

 

   

) (1.1) 

 

   Where yj is the output of the j
th

 node, m is the number of inputs to the j
th

 node, x is 

the input value, w is the input weight, and b is a bias factor. 

 After each element in the data set, the weights for the inputs are updated, based on 

error.  If the target value was achieved, the weights remain unchanged.  Equation (3) 

describes how the neural network updates the j
th

 weight in the i
th

 layer.     

 

            
      

  
 (1.2) 

  

Where   is the learning rate,   is the error attributed to the node and f is the activation 

function. 
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 It is this recalculating of the weights that allows the neural network to “learn” a 

dataset.  Stopping criteria is user defined, usually by limiting the number of epochs, or 

cycles through the data set, the model continues.  The original perceptron was developed 

by Rosenblatt (1958) in at the Cornell Aeronautical Laboratory, but the observation was 

made that the single layer perceptron was only capable of learning when the data set was 

linearly separable, such as modeling the XOR gate [23].  However, after further 

development, multiple perceptrons was placed in layers (see figure 1.2), and the simple 

stepwise activation function was replaced with a continuous and differentiable sigmoidal 

one, so that its outputs could be continuous.  The resulting structure of the perceptron 

when put into layers, can be seen below in the Figure 2 which is an MLP schematic with 

two hidden layers and 15 nodes.  An example of the new sigmoidal activation function 

for continuous MLPs, in this case the logistic function, is show in equation 1.1. 

 

      
 

     
 (1.3) 

 

Figure 1.2. Multilayer perceptron 
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 The optimal structure of a NN still remains a trial-and-error process, but there are 

several rules of thumb that previous researchers have found useful.  For example, 

Tarassenko (1998) states that the number of samples in the training set should be greater 

than the number of synaptic weights in the network, and according to Hecht-Nielsen 

(1987) the number of hidden nodes, M, in a single hidden layer model NN is between I 

and 2I +1, where I is the number of input nodes [24, 25].  Data-mining software, such as 

Statistica or WEKA can be a useful tool for testing multiple NN structures to find optimal 

results [26].          
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CHAPTER 2. 

TWO DATA MINING APPROACHES FOR FILLING MISSING DATA 

 

2.1. Introduction 

Dissolved oxygen (DO) concentration serves as a benchmark for measuring the 

ecological health of aquatic systems.  Environmentalists, namely the Department of 

Natural Resources (DNR) have established a minimum DO concentration value of   

5mgL
-1

 as a minimum threshold for water quality [38].  Hydrological data is notoriously 

erroneous and often contains missing values, as the instruments used in data collection 

are outdoors and must withstand the elements, making them susceptible to debris and 

organic matter which may cause instrument failure.   

 There have been several models developed to explain the processes of dissolved 

oxygen (DO), a primary water quality indicator.  The most popular of which being based 

on the classical Streeter and Phelps (1925) equations to simulate changes in DO 

concentrations over distance.  These changes in DO are due to the complex and highly 

nonlinear deoxygenation and reaeration systems that are active in aquatic environments 

[1].   

 Water quality data of 20-minute resolution obtained from the Clear Creek basin of 

Johnson County, Iowa is used to build multilayer perceptron networks for the modeling 

and forecasting the dissolved oxygen concentrations at a downstream gaging station.  

Two methods for estimating missing water quality data, a condition that has troubled 

many scientists in the field of hydrology, are considered.  Thus, two types of models are 
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built for data estimation; (Type-1) a model that uses other water quality data to estimate 

dissolved oxygen concentration and (Type-2) another that utilizes time series data mining 

techniques and dissolved oxygen memory parameters for current dissolved oxygen 

estimation.   

 Aside from targeting such a meaningful water quality assessment parameter, this 

chapter acts as an application of data mining for left-handed data estimation, which is 

generalizable for water quality measurements other than just DO.  In other words, a left-

handed data estimate is one that acts on only past, or historical, data, rather than a 

considering two-sided approach that uses future data (i.e. hindcasting) [39].  Such a left-

handed model is compatible with hydrological models that run in real-time.  An accurate 

Type-1 model, as described in the abstract section, may substitute a DO sensor altogether 

or provide information where DO data is not available, but other water quality data is.   

 

2.2. Data description 

DO concentration is known to be dependent on several factors, such as 

temperature, pH time of day, solar radiation, and as mentioned above, the presence of 

aquatic biotic.  It is noted in the literature that these factors are correlated [40].  For 

example, solar radiation is strongly related to aquatic diurnal cycles, which both affect 

temperature, and aquatic life is sensitive to the pH of a water body.  The deployment of in 

situ water quality instrumentation has given scientists the ability to observe water 

chemistry phenomena at a sub-daily time scale.  The observation of the diel cycles of DO 

concentration and dissolved inorganic carbon are two products of this new capability 
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[41].  Chapra and Di Toro (1991) found that decreased DO concentrations often happen 

at night in aquatic environments because of the respiration processes of large 

phytoplankton communities [42].  Also, DO and pH are inversely related.  High DO 

concentrations are associated with acid mixed liquor and nitrification while low DO is 

associated with high pH and a non-nitrifying, or even denitrifying system state [43].  

Finally, as no solar radiation data available for the study area, the hour of the day will be 

used as an input parameter for this study.  Obviously, higher solar radiation values are 

observed during the midday hours.   

 Nearly six months of water quality data, from 3/22/2006 to 9/12/2006, was 

collected from the HIS from the South Amana gauge location in the Clear Creek basin in 

Johnson County, Iowa (lat/lon N31.736 W91.931).  A map of the study area is displayed 

in Figure 2.3, where each square is approximately 1 km
2
.   

 

 

 

Figure 2.1 Map of the Clear Creek Digital Watershed 
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The sampling frequency of the data set was 3 observations per hour and included 

DO (mg/L), temperature (degrees C), pH, specific conductivity (mS/cm), and turbidity 

(NTU).  Two hours (6 time steps) of memory for each parameter was used and 

considered a new feature.  This raised the datasets dimensionality from 5 to 35.  Memory 

parameters act to improve the results of a dynamic system by providing the model 

information on the rate of change of its features, instead of the model only considering a 

simple “snapshot.”  Using model memory is somewhat analogous to a time derivative in 

physics-based models.  The table below provides a complete list of the input variables 

and the target variables in this study as well as their respective units of measurement, 

where mS/cm is microSiemens per centimeter, deg C is degrees Celsius, NTU is 

nephelometric turbidity units, and mg/L is milligrams per liter.   

 

 

Table 2.1. Data description statistics 

 

Dissolved 

oxygen (mg/L) 

Temperature 

(deg C) 
pH 

Specific 

conductivity 

(mS/cm) 

Turbidity 

(NTU) 

Min 0.20 1.19 6.39 0.15 0.00 

Max 17.57 27.23 8.71 0.83 3000.00 

Mean 8.36 13.29 7.35 0.58 80.18 

Std. 

Dev. 
3.23 5.52 0.36 0.03 312.63 

 

 

The following table lists the correlation coefficients (ρ) of each water quality parameter 

with dissolved oxygen. 
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Table 2.2.  Water quality correlation coefficient matrix 

Water quality parameter ρ DO  

Specific conductivity -0.38 

pH 0.31 

Temperature -0.18 

Turbidity 0.11 

 

 

 As evidenced in the above figures and chart, there exists a negative correlation 

between temperature and dissolved oxygen concentration, and specific conductivity and 

dissolved oxygen concentration.  This is in agreement with Colt (1983) which states that 

temperature decreases cause an increase in the saturation concentration of DO [43].  

 

2.3 Data preprocessing 

 Data sets often contain missing values, outliers, and features that are not useful to 

the model.  Useless features may be contain redundant information with others or are not 

well correlated to the target feature.  While table 2.2 provides some insight as to the 

relationship between input and output, further parameter selection will be accomplished 

with the use of wrapper algorithms.  In this chapter there were five durations where the 

instruments were taken offline, two of which lasted nearly 3 weeks, or 1331 instances.  In 

total 3298 instances of missing data were removed, leaving 9252 instances for analysis.   

 The input data was then linearly normalized so that the feature space would be 

symmetrical.  If the data is not normalized, the feature space will take the shape of the 

features with the largest range which will skew the results.  These values will have a 

bigger influence on the model even if they are not a stronger predictor.  The data was 
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normalized in a linear fashion, by first subtracting the minimum value for each instance, 

and then dividing this difference by the range feature’s range.  A mathematical 

description of the linear normalization is provided below in equation (2.1).    

 

    
      

         
 (2.1) 

 

2.4. Initial parameter selection 

For the time series data mining case, 8 hours, or 32 time steps of memory are 

considered.  Thirty-two memory parameters were considered for each of the water quality 

measurements.  Wrapper feature selection algorithms are utilized with heuristic search 

methods to find the optimal subset, or combination of input parameters, that provide the 

best results.  Table 2.1 shows the list of memory features chosen.   
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Table 2.3. Initial input variables for Type-1 DO modeling 

Time step Input variables Time step Input variables 

t-0 

Hour of day 

t-3 

Hour of day 

Specific conductivity (mS/cm) Specific conductivity (mS/cm) 

Temperature (deg C) Temperature (deg C) 

pH pH 

Turbidity (NTU) Turbidity (NTU) 

t-1 

Hour of day 

t-5 

Hour of day 

Specific conductivity (mS/cm) Specific conductivity (mS/cm) 

Temperature (deg C) Temperature (deg C) 

pH pH 

Turbidity (NTU) Turbidity (NTU) 

t-2 

Hour of day 

t-6 

Hour of day 

Specific conductivity (mS/cm) Specific conductivity (mS/cm) 

Temperature (deg C) Temperature (deg C) 

pH pH 

Turbidity (NTU) Turbidity (NTU) 

t-3 

Hour of day 
  

Specific conductivity (mS/cm) 
  

Temperature (deg C) 
  

pH 
  

Turbidity (NTU) 
  

 

 

2.5. Parameter selection algorithm 

 As mentioned above, the wrapper search method is much more computationally 

expensive than the correlation-based filter methods described in Chapter 2, especially for 

long or highly dimensional data sets.  For this reason, five percent of the total instances 

(361/9220) were chosen at random and without replacement for processing in the 

wrapper algorithms.  The genetic search algorithm as described in Chapter 1 is used, and 

compared with the best first search algorithm.   
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 The best first search uses the method of greedy hill-climbing to find an optimal 

subset.  Each subset is trained with the user selected modeling algorithm, customary for 

wrapper search approaches.  The accuracy of each model (RMSE) is used as the metric 

for determining the optimality of the subset.  Once the accuracy is determined, the search 

continues onward by adding a new feature to the current subset, backtracking if 

necessary.  The backtracking facility ensures that if a newly added feature does not 

improve results of the previous set of selected features, it will “backtrack,” or return to 

the previous subset that showed better accuracy.  From this return point, the search 

continues by adding a different feature to the original subset, and analyzing this new 

subset’s performance.  The algorithm stops after a user-defined number of forward 

tracking instances result in no model improvement.  The search method can be run 

backwards (starting with the entire data set and removing features) or forwards (starting 

with a single feature and adding features) [26].  The search algorithm was defined to run 

forward and terminate after backtracking 5 times. 

 The results of the feature selection for both the Type-1 and Type-2 DO modeling 

are shown below in Table 3 and Table 5.    
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Table 2.4 Type-1 DO modeling wrapper feature selection results 

Best first search Genetic algorithm search 

Temperature t-0  Temperature t-0 Hour of day t-3 

Specific conductivity t-0  pH t-0 Temperature t-3 

Hour of day t-1  Turbidity t-0 pH t-3 

Temperature t-1  Hour of day t-1 Turbidity t-3 

pH t-1  Temperature t-1 Hour of day t-5 

Specific conductivity t-1  pH   t-1 Hour of day t-6 

pH t-2  Specific conductivity t-1 Temperature t-6 

Temperature t-3  Hour of day t-2 pH t-6 

Specific conductivity t-3  pH t-2 Specific conductivity t-6 

pH t-3  Specific conductivity t-2 Turbidity t-6 

Temperature t-6  pH t-3  

  Specific conductivity t-3  

  Turbidity t-3  

 

 

Table 2.5. Type-2 DO modeling wrapper feature selection results 

Best first Genetic search 

Dissolved oxygen t-1 Dissolved oxygen t-1 

Dissolved oxygen t-8 Dissolved oxygen t-9 

Dissolved oxygen t-31 Dissolved oxygen t-10 

 Dissolved oxygen t-18 

 Dissolved oxygen t-26 

 Dissolved oxygen t-27 

 Dissolved oxygen t-28 

 

 

2.6. Model training/testing 

 Following Tan et al. (2006), 2/3 of the dataset was used for training, and 1/3 for 

testing, which is a commonly used ratio to balance generalizability with accuracy [21].  

The networks were tested in their ability to model the DO concentration at the South 

Amana. 
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 For both the DO modeling and forecasting, the same accuracy metrics are 

considered. The metrics chosen to are the mean absolute error (MAE) and relative 

absolute error (RE), whose mathematical representations are shown in equations (2)-(5). 

 

                           (2.2) 

     
  

         
 (2.3) 

      
∑     

 
   

 
 (2.4) 

     
∑    

 
   

 
 (2.5) 

 

2.6.1. Type-1 DO modeling  

 Using Statistica’s “Automatic Network Search,” 100 MLP’s were generated with 

random attributes, such as learning rate, momentum, number of hidden layers, and 

number of nodes.  The activation functions tried in the neurons were the identity, logistic, 

tanh, and exponential functions.  The top 5 performing MLPs were retrained (tuned) and 

their results are shown in Tables 2.6 and 2.7.  

 

Table 2.6. Type-1 modeling wrapper-best first search derived MLPs 

Network 

structure 

Training 

corr. 

Test 

corr. 

Training 

RAE 

Test 

RAE 

Hidden 

activation 

Output 

activation 

MLP 11-13-1 0.933 0.917 0.566 0.857 Tanh Logistic 

MLP 11-13-1 0.936 0.900 0.632 1.028 Tanh Logistic 

MLP 11-6-1 0.868 0.853 1.273 1.363 Tanh Logistic 

MLP 11-6-1 0.906 0.877 0.923 1.231 Tanh Tanh 

MLP 11-6-1 0.910 0.885 0.888 1.168 Logistic Tanh 
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Table 2.7. Type-1 modeling wrapper-genetic search derived MLPs 

Network 

structure 

Training 

corr. 

Test 

corr. 

Training 

RAE 

Test 

RAE 

Hidden 

activation 

Output 

activation 

MLP 23-11-1 0.939 0.923 0.612 0.783 Tanh Logistic 

MLP 23-13-1 0.931 0.912 0.688 0.913 Exponential Logistic 

MLP 23-8-1 0.938 0.928 0.626 0.736 Logistic Tanh 

MLP 23-12-1 0.913 0.897 0.837 1.052 Tanh Exponential 

MLP 23-6-1 0.912 0.893 0.865 1.092 Tanh Identity 

 

   

2.6.2. Type-2 DO modeling  

The following tables show the network structure of the MLPs derived from both 

feature selection algorithms, along with their respective training and testing performance, 

and their hidden activation and output activation functions.   

 

Table 2.8. Wrapper-genetic search derived NNs 

Network 

structure 

Training 

corr. 

Test 

corr. 

Training 

RAE 

Test 

RAE 

Hidden 

activation 

Output 

activation 

MLP 7-3-1 0.995 0.997 0.053 0.029 Exponential Exponential 

MLP 7-12-1 0.997 0.997 0.035 0.028 Logistic Tanh 

MLP 7-7-1 0.996 0.997 0.039 0.029 Tanh Identity 

MLP 7-10-1 0.996 0.997 0.037 0.033 Logistic Tanh 

MLP 7-7-1 0.996 0.997 0.038 0.028 Logistic Identity 
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Table 2.9. Wrapper-best first search derived NNs 

Network 

structure 

Training 

corr. 

Test 

corr. 

Training 

RAE 

Test 

RAE 

Hidden 

activation 

Output 

activation 

MLP 3-3-1 0.996 0.997 0.039 0.028 Logistic Identity 

MLP 3-8-1 0.997 0.998 0.033 0.026 Exponential Identity 

MLP 3-7-1 0.997 0.998 0.033 0.026 Logistic Identity 

MLP 3-9-1 0.995 0.998 0.052 0.026 Logistic Logistic 

MLP 3-7-1 0.996 0.998 0.038 0.026 Exponential Identity 

  

It is apparent from the above tables that the MLPs derived from the genetic search 

method were comparable to those selected by the best first search algorithm.  It is also 

apparent that the results from the type-2 modeling are far superior to those of the type-1.  

This is intuitive because the type-2 modeling used past values of the target variable as 

input.  For the remainder of this study, the top performing MLP from each wrapper 

algorithm of the type-2 modeling is considered for iterative forecasting. 

   

2.7. Dissolved oxygen concentration forecasting 

 An obvious extension of modeling DO concentration is to make a DO forecast.  

This is done by simply iterating the Type-2 DO modeling result successively and 

updating the memory parameters accordingly [44].  For example, if the oldest memory 

parameter is t-28, as in the MLPs derived from the genetic search algorithm, then on the 

29
th

 iterative forecast, the model will be running entirely on model output data, rather 

than actual observed data. 
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Figure 2.2. Sliding learning window schematic 

 

 

 

Figure 2.3. MLP derived from genetic search feature selection algorithm 
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Figure 2.4. MLP derived from best first search feature selection algorithm 

 

 It can be noted that the iterative forecasts for both models show good accuracy 

(less than 20% error) through twenty time steps. 
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Figure 2.5. MLP derived from genetic search feature selection algorithm 

 

 

 

 

Figure 2.6. MLP derived from best first search feature selection algorithm 
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Table 2.10. MLP forecast performance through 8900 time steps 

MLP model ME (mg/L) MAE (mg/L) RE 

Genetic search derived -0.593 2.725 0.523 

Best first search derived 1.138 2.707 0.633 

 

  

 Table 10 is complimentary to the charts displayed in Figures 2.3 and 2.4.  Figure 

2.3 shows the model’s forecast converging to ~8mg/L, and Figure 2.4 shows its 

respective model’s forecast converging to ~10mg/L.  From Table 2.10 the ME of the 

genetic search MLP and best first MLP was -0.593 mg/L and 1.133 mg/L, respectively.  

In other words, the first model tended to underestimate the DO concentration while the 

second overestimated. 

 

2.8. Conclusion 

 Two data driven techniques for DO modeling (1) using concurrent remaining 

water quality measurements and (2) using previous DO observations (time series data 

mining), were exercised in this chapter.  The genetic search method showed slight 

dominance over the best first search method for selecting the optimal features in the 

Type-1 modeling case, but the two algorithms had comparable results in the Type-2 case.   

 The Type-2 DO modeling technique outperformed the Type-1 technique and was 

used to make longer range iterative forecasts.  These forecasts showed accuracy up to 20 

time steps with a relative absolute error within 10%.  Both forecasting models converged 

over time (around 500 time steps) to a value close to the average DO concentration for 

the period.   
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 In the case where future data is not possible and data must be estimated with only 

past observations, these two methods may be applied.  One method uses other concurrent 

and past water quality parameters to estimate a water quality value that is either missing 

or not measured at a given location.  The other method uses memory values of the desired 

parameter for modeling and forecasting using time series data mining.       
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CHAPTER 3. 

TURBIDITY FORECAST WITH DATA DRIVEN MODELING 

 

3.1. Introduction 

 Turbidity is one of the basic measures of water quality.  Cloudy water would not 

be consumed for obvious reasons.  Besides helping to determine potable water, turbidity 

has a significant impact on ecology.  Suspended particles block the passing of light 

through water, limiting the ability of photosynthetic life, and those creatures which feed 

on such organisms, to flourish.  Carnivorous predators have trouble locating food in 

murky waters.  Extreme turbidity values disrupt fish respiration and may lead to their 

extinction. Finally, recreational activities such as fishing and swimming are negatively 

impacted.  Furthermore, a water quality forecast provides water treatment plants 

advanced notice so they may make operational adjustments so as to conserve energy [27].  

In this chapter, data mining is utilized to predict water quality, which continues to 

be a modeling challenge, as it is characterized by nonlinear and non-stationary properties.  

Five months of real-time data from Clear Creek, an Iowa River tributary, was collected to 

model turbidity at a downstream location using MLP algorithms.  To achieve the best 

prediction accuracy, correlation analysis and parameter selection algorithms are used to 

select the most suitable inputs. The resulting neural network model is compared to a 

linear regression as a demonstration of the neural network’s ability to interpret the 

nonlinear dynamics of water quality.   
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3.2. Data description 

The Consortium of Universities for the Advancement of Hydrologic Science 

(CUAHSI) is a National Science Foundation (NSF) supported organization for the 

development of infrastructure and services of hydrologic science, executed at the 

university level.  A product of the CUAHSI at the University of Iowa is the Clear Creek 

Digital Watershed (CCDW).  The CCDW’s Hydrological Information System (HIS) 

provides various data (i.e., water quality, discharge, and NEXRAD) from several 

locations within the CCW.  Five months (5/12/2009 to 9/24/2009) of 15-minute water 

quality and discharge data was selected for study on the basis of completeness.  This time 

series was also ideal because 15-minute discharge data is available.  Prior to 12/2/2008, 

the discharge measurements were recorded every 30 minutes.  The dataset considered in 

this research contains turbidity observations, measured in Nephelometric Turbidity Units 

(NTU), and discharge observations, measured in cubic meters per second (CUMEC), 

from two locations located approximately 13 km from one another.  The two gauging 

locations are at Oxford, IA and Coralville, IA, both on Clear Creek, and can be viewed 

below in Figure 3.1.  Table 3.1 provides some statistics of the data set.  
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Figure 3.1. Map of Clear Creek study area 

 

Table 3.1. Data statistics 

 

Coralville 

turbidity (NTU) 

Oxford 

turbidity 

(NTU) 

Oxford discharge 

(CUMEC) 

Coralvile 

discharge 

(CUMEC) 

Min 0.00 0.00 24.00 27.00 

Max 1590.00 1584.00 4000.00 3510.00 

Standard 

deviation 
185.74 262.48 369.77 361.90 

 

 

3.3. Data preprocessing 

The original data set was from 5/12/2009 to 10/23/2009.  However, there were 

many gaps in the time series for various parameters and even changes in the temporal 

resolution of the discharge data.  As the analysis is to include memory parameters, or past 

values, it is essential that missing data be accounted for and assigned a no data indicator 

(NaN) rather than simply omitted from the time series.  If the empty data points are not 

accounted for, the model may errantly select a memory parameter for more than one time 
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stamp in the past.  Missing data was removed pairwise.  After missing data removal, the 

number of elements in the data set was reduced from 15718 to 7527.   

 The input data is also linearly normalized from 0 to 1.  The purpose of this is to 

prevent parameters with wide ranges from dominating the model.  Essentially this 

reshapes the feature space so as to be more spherical, rather than skewed in the direction 

of the parameter with the largest domain.  

 

3.4. Initial parameter selection 

 Memory parameters provide a sense of the process’ local rate of change at a given 

instant.  Modeling without memory parameters is equivalent to predicting the position of 

an object in motion using a snapshot rather than a flip book.  Downstream turbidity 

(target variable) memory values were not used as input parameters so as to create a 

regression based solely on independent variables for both modeling and prediction.  

However, upstream turbidity was used as an input parameter.     

 Like the work of Palani et al. (2008) involving chlorine concentrations, the 

correlation between upstream and downstream turbidity was key information in selecting 

input parameters [9].  The lag, or travel time, between the Oxford (upstream)  and 

Coralville (downstream) observed discharge and turbidity was essential in defining the 

bounds of the model’s memory.  Figure 3.2 shows the turbidity time series of the two 

gauges.  One may notice a slight lag, with Oxford (upstream) turbidity peaks preceding 

Coralville (downstream) peaks.  Figure 2 is a normalized time series of Oxford discharge 

and Coralville turbidity that show a similar lag.  Due to the likeness of the two figures, 
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the observation can be made qualitatively that turbidity and discharge at a given site are 

strongly correlated.  For a quantitative comparison, a cross correlation is conducted.   

 

 

Figure 3.2. Oxford and Coralville turbidity time series 

 

 

Figure 3.3. Normalized Coralville turbidity and normalized Oxford discharge 
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 Figures 3.4-3.7 are graphs of the cross-correlations of Oxford turbidity and 

Coralville turbidity, Oxford discharge and Coralville discharge, and Coralville discharge 

and Coralville turbidity.  The cross correlation equation can be seen below, in equation 

3.1, Where Xn and Yn are jointly stationary random processes and E {·} is the expected 

value operator [28].  

 

 

         {      
 }   {      

 } (3.1) 

   

  

 The purpose of these three charts is to better visualize and analyze the lag time 

between the two gauging stations.  After solving the normalized cross correlation 

equation, and locating the peaks of Figures 3.4-3.7, the maximum cross correlation value 

is at t+12 for Oxford turbidity-Coralville turbidity, t+24 for Oxford discharge-Coralville 

turbidity, and t+0 for Coralville discharge-Coralville turbidity.  As each time step is 15 

minutes for this data set, these three value scan be expressed as 3 hours, 6 hours, and 0 

hours, respectively.          
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Figure 3.4. Oxford turbidity-Coralville turbidity cross-correlation 

 

 

 

 

Figure 3.5. Oxford discharge-Coralville discharge cross-correlation 
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Figure 3.6. Oxford discharge-Coralville turbidity cross-correlation 

 

 

 

 

Figure 3.7. Coralville discharge-Coralville turbidity cross-correlation 
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3.5. Parameter selection algorithm 

 To further reduce the dimensionality of the model a genetic search algorithm was 

used to select the optimal subset of input parameters for model building.  While the 

parameter selection algorithms are much better than correlation-based parameter 

selection, their computational demand restricts the dimensionality of the data set used for 

input.  For this reason, the correlation filtering procedure of the previous section was 

used.   

 The genetic search algorithm optimizes the subset of input parameters through the 

evolutionary processes of crossover, mutation, and selection.  A population of random 

subsets is created, and then trained/tested with a multilayer perceptron.  Once the 

accuracy is calculated (RMSE), those individuals (subsets) whom show the highest 

degree of accuracy, survive, and are randomly paired up for crossover.  During crossover, 

the pairs of individuals will swap a portion of their subset with one another.  This 

introduces diversity to the set of solutions.  Mutation occurs at random in the new 

generation, also to introduce diversity to the population.  During mutation, one of input 

parameters is exchanged with another.  The offspring’s fitness is calculated (RMSE), and 

the process is iterated a user-defined number of times.   

 In this chapter the initial population was set to 20, the crossover probability to 0.6, 

mutation probability to 0.033, and number of generations to 50, as per Hall et. al [26].  

The equations for root mean squared error (RMSE) and mean squared error (MSE) are 

found in the equations (3.2) and (3.3) [28].  Table 3.2 and Figure 3.8 display the 

parameters chosen by the genetic search algorithm and its convergence behavior 

throughout 50 generations. 
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             √           (3.2) 

     
∑            

  
   

 
 (3.3) 

 

  

Figure 3.8. Genetic search error rate convergence through 50 generations 

 

 

 

Table 3.2. Genetic search parameter selection results 

Coralville Q t-2 Oxford Q t-25 

Oxford Q t-18 Oxford Q t-27 

Oxford Q t-20 Oxford Q t-28 

Oxford Q t-22 Oxford T t-11 

Oxford Q t-23  

 

 Where Q is discharge and T is turbidity. 
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 It can be seen that the error rate (RMSE) makes decrease between generations 10 

and 15, and then converges to around 134 for the rest of the run time.  After the 

correlation based preprocessing of section 3.2 and this genetic search parameter selection, 

the number of parameters is reduced to only 9. 

 

3.6. Algorithm training and testing 

 The data set, now consisting of 7527 elements was split into three sections; one 

held 70% of the elements and was used for testing, and the two others, both contained 

15% tuning and testing purposes.  The data was allocated to these three subsets in a 

random fashion so as not to over train, and thus over fit, the model to one particular 

period in the time series.  The data-mining software randomly built 20 networks with 

various numbers of nodes, hidden layers, learning rates, and activation functions, all 

within user defined thresholds.  The five top performing NNs from the initial twenty were 

retrained (tuned) and tested.          

 

3.6.1. Metrics for comparison 

 The metrics chosen to measure performance are the correlation coefficient (ρ) 

mean absolute error (MAE), relative error (RE), whose mathematical representations are 

shown in equations (3.1)-(3.4). 

 

      
        

    
 

               

    
 (3.4) 

                           (3.5) 



www.manaraa.com

37 

 

 

     
∑    

 
   

 
 (3.6) 

    
  

         
 (3.7) 

 

 N is the number of elements, or length of the data set, v(target) is the observed 

turbidity measurement, and v(predicted) is the predicted turbidity of the model.  

 

3.7. Results 

 The results of the top five MLPs for turbidity modeling are visible below in table 

3.4, and their details in Table 3.5.  Corr. coeff is the correlation coefficient between the 

models turbidity prediction and the target turbidity, ME is mean error, MAE.  

 

Table 3.3. Downstream turbidity modeling results 

Algorithm Corr. coeff. ME MAE RE 

1.MLP 9-8-1 0.874 -0.209 39.121 0.428 

2.MLP 9-11-1 0.881 -0.973 38.851 0.425 

3.MLP 9-13-1 0.900 -3.750 38.065 0.417 

4.MLP 9-12-1 0.851 -0.330 41.998 0.460 

5.MLP 9-13-1 0.885 -5.116 40.417 0.442 

Ensemble 0.909 -2.076 34.171 0.374 
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Table 3.4. MLP details 

Network structure Hidden activation Output activation 

MLP 9-8-1 Tanh Tanh 

MLP 9-11-1 Tanh Identity 

MLP 9-13-1 Tanh Logistic 

MLP 9-12-1 Exponential Tanh 

MLP 9-13-1 Logistic Exponential 

 

 

All the MLPs showed similar accuracy, which makes for a stable ensemble.  The 

number of hidden nodes ranged from 8 to 13 (center hyphenated number under “Network 

structure” column).  The most common hidden activation functions were the hyperbolic 

tangent with the exponential and logistic functions also appearing.  The results of the 

training and testing were similar in accuracy.  This is consistent training and testing 

performance is usually attributed to models that do not over fit [36]. 
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Figure 3.9. Ensemble predicted downstream turbidity scatter plot 

 

 

Table 3.5.  Turbidity modeling sensitivity analysis 

Model 
OX Q 

t-18 

CO Q 

q t-2 

OX Q 

t-28 

OX Q 

t-20 

OX Q 

t-22 

OX Q 

t-27 

OX Q 

t-25 

OX Q 

t-23 

OX T  

t-11 

MLP 9-6-1 11.61 17.16 2.38 7.90 7.14 2.98 6.82 1.13 1.49 

MLP 9-12-1 10.50 24.40 2.68 2.68 5.48 2.59 1.29 2.24 2.13 

MLP 9-9-1 1.51 18.62 1.17 1.20 1.19 2.84 1.22 1.22 1.78 

MLP 9-7-1 20.65 18.60 10.13 19.50 4.90 5.79 15.50 10.39 1.49 

MLP 9-11-1 203.77 26.49 83.56 29.51 33.15 26.86 12.67 16.26 2.21 

  

Where CO is Coralville and OX is Oxford. 

A sensitivity analysis was conducted so as to give some insight on which 

parameters were most influential to the model.  Based on the above figure it is apparent 

that the Oxford discharge at t-18 was most influential to the model, seconded by the 

Coralville discharge at t-2.     
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3.7.1. Comparison with ordinary least squares regression (OLR) 

The MLP’s ability to model nonlinear and non-stationary phenomena is evidenced 

when compared to an ordinary linear regression (OLR) model.  Although the MLP only 

had mild success in modeling the downstream turbidity, when considering the high 

variance of turbidity, and its difficulty in modeling due to its nonlinearity, the results are 

impressive when compared to the OLR. The OLR was set to step through the attributes 

removing the one with the smallest standardized coefficient until no improvement was 

observed in the estimate of the error given by the Akaike information criterion (AIC), 

which is an effective criterion for estimating the relative support of a model [17].  Also, 

collinear parameters were removed in model building.  The equation for the AIC is 

provided below. 

 

                (3.8) 

 

 Where k is the number of parameters in the model and L is the estimated  

The results of the OLR can be found in table below. 

 

Table 3.6. Ordinary linear regression results 

Correlation coefficient 0.556 

Mean absolute error 71.614 

Root mean squared error 159.229 

Relative absolute error 0.710 
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 Comparing the result of the above table with the results from Table 3.4., it is 

obvious that the MLP shows dominance over the OLR and is better able to interpret the 

nonlinearities of the hydrological system.   

 

3.8. Conclusion 

 Data-mining algorithms were used to model downstream turbidity of the Clear 

Creak tributary of the Iowa River and obtain high quality downstream turbidity 

predictions.  The extent of the model’s memory was user defined by correlation analysis, 

and then justified with a standard parameter selection algorithm, the genetic search.  The 

performances of twenty neural networks were evaluated and the top five retained for the 

building of an ensemble model.  The ensemble accuracy is reported algorithm reported 

accuracy greater than 95%.     
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CHAPTER 4. 

PRECIPITATION ESTIMATION WITH DATA DRIVEN MODELING 

 

4.1. Introduction 

 The connection between radar data and tipping bucket precipitation has been a 

topic of interest in the hydrological and meteorological community for a decade and is 

motivated by the necessity for higher resolution precipitation for hydrological model 

input.  In this paper, a series of multilayer perceptrons (MLPs) trained with next 

generation radar (NEXRAD) and rain gauge data for precipitation estimation at Oxford, 

IA.  The resulting MLPs have MAEs of less than 0.1mm/hr.  The vision of the author is 

to develop this model, which links rain gauge and radar data, to produce a system of 

“virtual tipping buckets” (VTBs) that benefit from the accuracy of physical tipping 

bucket rain gauges, and the spatiotemporal resolution of NEXRAD system technology.  

The system of VTBs has been developed to serve as input to the Soil and Water 

Assessment Tool (SWAT) hydrological model [Neitsch SWAT].     

 The high spatiotemporal resolution of next generation radar (NEXRAD) makes it 

a useful instrument for precipitation estimation.  NEXRAD-II data are the three 

meteorological base data quantities: reflectivity, mean radial velocity, and spectrum 

width.  NEXRAD-III data are derived from various algorithms for processing NEXRAD-

II data to produce numerous meteorological analysis products, such as storm velocity, 

one hour precipitation total, storm total precipitation, digital mesocyclone detection, 

digital precipitation array, wind profiles, and vertical integrated liquid content [45]. 
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Radar data has sources of error which could be mitigated by the aid of a secondary 

system, such as a rain gauge.  Blockage by mountains and hilly terrain, confusion with 

flocks of birds and swarms of insects, and signal attenuation are all problematic to radar 

observations.  In fact, a field of radar studies, called radar ornithology, uses radar system 

to study the migratory habits of birds.  Rain gauges measure rather than estimate 

precipitation and are thus deemed as the most truthful account of rainfall available.  

 However, rain gauges provide mere point measurements, and their values may be 

different from those at another gauge only a few kilometers away.  It is common, 

especially during the convective season when the atmosphere is often unstable, for very 

high precipitation rates to be measured at one location, and none at another.  Should the 

two technologies be melded together, that is NEXRAD and tipping bucket rain gauge, the 

strengths of both systems could be utilized.     

 The aim of this chapter is to use NEXRAD-II reflectivity data from a weather 

station in Davenport, IA and tipping bucket rain gauge data from South Amana and Iowa 

City, IA to train multilayer perceptron (MLP) for precipitation estimation at a rain gauge 

in Oxford, IA.  The resulting model is then compared with the National Oceanic and 

Atmospheric Association’s (NOAA) algorithm for converting reflectivity data to hourly 

precipitation, a NEXRAD-III product.  The robustness of this model is tested at two other 

tipping bucket locations, South Amana and Iowa City.  This model could then be used to 

provide the SWAT hydrological model with rainfall data of a 5 minutely observation 

frequency and a spatial resolution of 1 km
2
.  Currently, the SWAT uses three tipping 

buckets within the ~250 km
2
 basin that report rain rates at 15 minute intervals.    
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4.2. Radar precipitation estimation (Z-R conversion) 

 The most common conversion (Z-R) of reflectivity to precipitation rate takes the 

following relationship:      

        (4.1) 

 Where Z is the reflectivity, R is the precipitation rate, and a and b are constants 

from empirical studies (calibration).  Typically, the values used for a and b are 200 and 

1.6 respectively.  The National Oceanic and Atmospheric Association (NOAA) has its 

own algorithms for estimating rainfall based on the relationship described in equation 

(4.1).  NOAA’s radar-based estimation of rainfall at the tipping buckets is downloaded 

can be found in NEXRAD-III products.      

 

4.3. Data acquisition  

 Two types of data were collected for the building of the MLP in this study, (1) 

radar reflectivity data and (2) tipping bucket precipitation data.  A third data set, the 

NOAA hourly rain fall total, was collected for comparison with the developed model.  

Although other work has considered using reflectivity bandwidth and horizontal wind 

velocity [46-48] in their models, their experimental results conclude that reflectivity is 

the only useful input.   

 

4.3.1. Doppler WSR-88D radar 

 The National Weather Service’s (NWS) Next Generation Radar (NEXRAD) 

system is comprised of 137 radar sites in the contiguous United States, each of with is 
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equipped with Doppler WSR-88D radar capable of reporting high resolution data and 

making a full 360 degree scan every 5 minutes, with has a range of ~230km and a spatial 

resolution of about 1km by 1km (Baer, 1991).  The weather station used in this study is 

located in Davenport, IA (KDVN), which is approximately 150 km from the tipping 

bucket locations.  Reflectivity was collected from four altitudes above ground level 

(AGL), 1km, 2km, 3km, and 3km.  As both the intensity and altitude of the reflectivity 

values are required to describe the shape of the approaching storm, it is necessary to 

provide data from multiple levels [49].  This is also consistent with the literature [10-13]. 

 

 

 

Figure 4.1. Hydro-NEXRAD image of KDVN radar coverage 
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Figure 4.2. NEXRAD reflectivity raster with Clear Creek superimposed 

 

4.3.2 Dual tipping bucket rain gauge 

 The rain gauge sites make part of the Consortium of Universities for the 

Advancement of Hydrologic Science, Inc. (CUAHSI) Clear Creek Digital Watershed 

(CCDW).  They are located at South Amana, Oxford, and Iowa City in Johnson County, 

IA, about 110-130 kilometers from the KDVN radar site.    Each instrument is equipped 

with dual buckets for quality checking purposes and redundancy.  It records precipitation 

rate in 0.0001 mm/hr, every 15 minutes.  The gauges are taken offline during the winter 

months.         

 

4.4. Preprocessing 

 Preprocessing data is a crucial step of the data mining process.  Outliers, missing 

data, and unreliable or low quality data all need to be considered before analysis.  The 
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NEXRAD data was ordered from the hydro NEXRAD site and downloaded via an FTP 

connection.  A script was written in Matlab to select the closest grid points that 

corresponded with the Oxford tipping bucket location.  Nine grid points were selected 

about the tipping bucket location, in agreement with Liu, Chandrasekar, and Xu (2001) 

[19].  This is to provide some margin for error in the GPS mapping of the tipping buckets 

and gridding of the KDVN radar raster map.  Also, rain does not fall straight down but 

may be advected horizontally.  Finally,   The NEXRAD data was collected at 5-min 

intervals, which is inconsistent with the temporal resolution of the tipping bucket, 

reported every 15-min.  This issue was simply dealt with by averaging the three radar 

observations made within each tipping bucket observation.  Also, the tipping bucket 

values were recorded to the 0.0001 mm/hr, which seemed excessively precise.  These 

values were rounded to the nearest 0.01 mm/hr for modeling purposes.   

 The time series considered was from April 1, 2007 to September 30, 2007 and 

was formatted to 15-min resolution, for a total of 50,792 data points.  Figure 3 shows the 

location of the three tipping buckets in the Clear Creek basin and the radar grid 

superimposed. 

 

 

Figure 4.3. Tipping bucket locations 

Iowa City Oxford 
South Amana 
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4.5. Parameter selection 

 Consistent with the previous chapters, the data has been plotted on scatter plots 

for better visualization of the input parameters relationship with the target variable.  

Figures 4.4-4.8 display scatter plots of the mean of the tipping buckets versus the Oxford 

tipping bucket, and the reflectivity values of the center most grid location at each altitude 

versus the Oxford tipping bucket. 

 

 

Figure 4.4 Tipping bucket average versus Oxford tipping bucket scatterplot 
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Figure 4.5. Reflectivity at 1km versus Oxford tipping bucket scatterplot 

 

 

 

Figure 4.6. Reflectivity at 2km Oxford tipping bucket scatterplot 
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Figure 4.7 Reflectivity at 3km versus Oxford tipping bucket scatterplot 

 

 

Figure 4.8. Reflectivity at 4km versus Oxford tipping bucket scatterplot 
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A more detailed, quantitative representation of the correlation between the 

different reflectivity parameters and the Oxford tipping bucket can be found below in 

Tables 4.1-4.3.  

 

 

Table 4.1. Reflectivity-tipping bucket correlation by height-direction

Feature ρ Feature ρ Feature ρ Feature ρ 

1km NW 0.51 2km NW 0.51 3km NW 0.51 4km NW 0.45 

1km N 0.38 2km N 0.38 3km N 0.50 4km N 0.44 

1km NE 0.39 2km NE 0.39 3km NE 0.50 4km NE 0.44 

1km W 0.53 2km W 0.53 3km W 0.53 4km W 0.47 

1km C 0.52 2km C 0.52 3km C 0.53 4km C 0.47 

1km E 0.51 2km E 0.52 3km E 0.53 4km E 0.46 

1km SW 0.53 2km SW 0.53 3km SW 0.53 4km SW 0.47 

1km S 0.52 2km S 0.52 3km S 0.53 4km S 0.47 

1km SE 0.51 2km SE 0.52 3km SE 0.53 4km SE 0.47 

 

 

Table 4.2. Reflectivity-tipping bucket correlation by height

Altitude Corr. coeff. 

4km 0.52 

3km 0.52 

2km 0.51 

1km 0.51 
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Table 4.3. Reflectivity-tipping bucket correlation by direction 

Direction ρ 

W 0.53 

SW 0.53 

C 0.53 

S 0.53 

E 0.52 

SE 0.52 

NW 0.51 

NE 0.40 

N 0.40 

  

 There appears to be a very mild trend in both altitude and location in reflectivity 

and correlation with the Oxford tipping bucket.  While correlation measures the strength 

of the linear relationship, nonlinear relationships may exist in the data set.  Heuristic 

feature selection algorithms are often used in the field of computational intelligence to 

find optimal subsets for modeling nonlinear phenomenon.  The feature selection 

algorithms selected are the best first and genetic search algorithms, as in the previous 

chapters.  These algorithms are “wrapped” within the MLP algorithm to find the 

parameters in the data that result in the best model, based on the selected metrics 

described in section 2.3.  In other words, both these algorithms employ a heuristic 

approach to training and testing data subsets in search of a local optimum.     

 Table 4.4 shows the results of the feature selection for the genetic search and best 

first search discussed earlier in this Thesis.  Figure 4.9 shows the convergence of the 

genetic search algorithm through 100 generations, where the value at generation 1 is the, 

and generation 101 is the error rate of the most fit individual of the final population.  

 Although the error continues to drop throughout the entire 100 generations, 
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convergence is observed after 20 generations at an error rate of 0.0230.  The most fit 

individual, as measured by error rate, at the last generation is selected for further analysis.  

 

Table 4.4. Wrapper-genetic search feature selection results 

Mean (SA and IC tipping bucket) 

North-1km 

Southeast-1km 

East-2km 

Southwest-2km 

Northwest-3km 

Central-3km 

East-3km 

Northwest-3km 

 

 

 

Figure 4.9. Genetic search convergence through 100 generations 
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4.6. Model training/testing 

 In training and testing of a data-driven model, there is always a balance between 

accuracy and overfitting, or lack of generalizability, of the model.  Especially for the 

purpose of this research, which is to establish a model that can be used at other tipping 

bucket locations, generalizability is of great importance.  Following Tan et al. (2006), 2/3 

of the dataset was used for training, and 1/3 for testing, which is a common split to 

balance generalizability with accuracy [21].  The networks were tested for predicting the 

rainfall rate (mm/hr) at the Oxford tipping bucket. 

 Using Statistica’s “Automatic Network Search” option 100 MLP’s were 

generated with random attributes.  Some of these characteristics were learning rate, 

momentum, number of hidden layers, and number of nodes.  The activation functions 

tried in the neurons were the identity, logistic, tanh, and exponential functions.  The top 

20 performing MLPs were retrained (tuned).  

 

4.7. Metrics for algorithm evaluation 

 The metrics chosen to measure performance are the mean error (ME) and mean 

absolute error (MAE) of the models, whose mathematical representations are shown in 

equations (4.2)-(4.6). 

 

 
     

        

    
 

               

    
 

(4.2) 

                           (4.3) 
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(4.4) 

 
     

∑     
 
   

 
 

(4.5) 

 
    

∑    
 
   

 
 

(4.6) 

  

 Where N is the number of elements, or length of the data set, RR(target) is the 

observed precipitation rate measurement, and RR(predicted) is the output of the model.  

 

4.8. Post processing 

 In some instances the MLP output negative precipitation values, which are 

infeasible.  These data were post processed by simply changing them to “zero” rainfall 

values.  Furthermore, the MLP outputs were rounded from 0.00001 mm/hr, which is not 

only of higher precision than the tipping bucket rain gauge, but also seemed excessively 

precise.  The output was rounded to the nearest 0.01mm/hr.    

 

4.9. Results 

 The results of the model building can be found in Table 1, which shows the 

results of the five top performing MLPs based on the evaluation metrics described earlier.  

The ensemble model, which is an average of the 5 MLPs, is also included.  Figure 1 

shows the MLP ensemble model estimated precipitation rate versus the observed rain rate 

at Oxford.  
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Table 4.5. MLP performance 

Model Test Corr. Test ME Test % error 
Std. dev of 

error 

MLP 9-11-1 0.894 -0.012 0.167 0.125 

MLP 9-4-1 0.894 -0.009 0.168 0.130 

MLP 9-13-1 0.897 -0.007 0.145 0.115 

MLP 9-5-1 0.895 -0.012 0.251 0.261 

MLP 9-5-1 0.904 -0.008 0.103 0.094 

 

 The MLPs shows good accuracy in estimating the magnitude of rainfall rate, and 

few false positives.  The two prominent instances of high error were checked.  Upon 

reviewing these data points, it is found that all three tipping bucket values recorded 

precipitation, but the radar data reported a clear sky, or reflectivity values of zero.  These 

points are most likely outliers. 

 

4.9.1. Comparison with NEXRAD-III Z-R conversion 

 As many data was required for the building of the VTB model at the Oxford 

location, there was not many data points (less than 2000) left for testing.  For this reason 

the scatter plot of Figure 4.8 seems emptier.  However, in the next section of this thesis, 

where the robustness of the VTB model is tested at two new locations, there are many 

more data points as none were required for retraining at these new locations 
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Figure 4.10. VTB scatter plot 

 

Figure 4.11. NEXRAD-III scatter plot 
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Table 4.6. VTB vs. NEXRAD-III 

 
Corr. coeff. ME (mm/hr) MAE (mm/hr) RE 

NEXRAD-III 0.507 0.084 0.201 0.550 

VTB 0.908 -0.019 0.085 0.555 

  

 The above two figures (4.8, 4.9) show that the VTB is better able to estimate 

higher precipitation values than the NEXRAD-III product.  It appears the NEXRAD 

tends to underestimate the actual precipitation value.  This notion is confirmed in the 

above table, as the mean error (ME) of the NEXRAD product is much greater than the 

underestimate of the VTB.     

 

Table 4.7. NEXRAD-III confusion matrix 

  
Predicted 

  
Rain No rain 

Target 
Rain 103 57 

No rain 103 1730 

 

 

Table 4.8. VTB confusion matrix 

  
Predicted 

  
Rain No rain 

Target 
Rain 95 66 

No rain 89 1735 

 

 As an alternative way to compare the two methods a confusion matrix was built.  

In this case, true/false values correspond to it raining/not raining.  Both the NEXRAD 

product and VTB perform relatively the same here.  The dominance of the VTB over the 

NEXRAD is not due to the NEXRAD misclassifying rain events, but inaccurately 

estimating the precipitation rate. 
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4.9.2. Robustness of VTB model 

 With the model built with respect to the Oxford rain gauge, it is of interest to test 

the model at the two other rain gauge locations at South Amana and Iowa City.  The radar 

data needs to be acquired for these two locations as before, and missing data taken care 

of.  When testing the VTB at the South Amana location, the mean tipping bucket 

parameter will be the average of the Oxford and Iowa City buckets, and likewise for the 

testing at the Iowa City rain gauge.  If the model proves to be robust at new locations, it 

can be situated throughout the basin with high confidence in its accuracy.  The figures 

and tables below prove that the model is truly robust.  

 

 

Figure 4.12. VTB at South Amana location  
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Figure 4.13. VTB at Iowa City location  

 

Table 4.9. VTB results at South Amana and Oxford 

 Corr coeff. ME (mm/hr) MAE (mm/hr) 

South Amana TB 0.6818 0.001 0.1235 

Iowa City TB 0.7614 0.0271 0.1123 

 

 

Table 4.10. VTB confusion matrix at South Amana 

  
Predicted 

  
Rain No rain 

Target 
Rain 353 205 

No rain 279 6496 

 

 

 

 

 

Table 4.11. VTB confusion matrix at Iowa City 

  
Predicted 

  
Rain No rain 
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Target 
Rain 238 126 

No rain 640 6330 

 

 

4.9.3. Introduction of VTB in the SWAT model 

 To test the effectiveness of the VTB, the same 5 months of data (5/1/2007-

9/30/2007) was input into the SWAT model at three arbitrarily chosen locations.  Again, 

the VTBs seen in Figure 4.14 as dark green triangles, do not require any actual 

instrumentation.  They simply consider the KDVN radar reflectivity data and the three 

surrounding tipping buckets as input.  They are capable of making estimation the 

precipitation at their locale with the accuracy illustrated in the above figures.   

 As the temporal resolution of the VTB (15-minutely) and the resolution of the 

SWAT model (daily) do not agree, a monthly water balance over the entire watershed 

was considered.  The results are seen graphically and in tabular form in Figure 4.15 and 

Table 4.12.      

 

 

Figure 4.14 VTB and actual tipping bucket locations in Clear Creek watershed 
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Figure 4.15 SWAT water balance results with VTB input 

 

Table 4.12. SWAT water balance results with VTB input 

Measured water balance (mm/ha) 1454.51 

Only TB simulated water balance (mm/ha) 1490.91 

TB VTBs simulated water balance (mm/ha) 1458.03 

 

4.10. Discussion 

 The MLP is capable of estimating the rainfall rate at the ground, verified by the 

tipping bucket rain gauge.  The two instances of high error in MLP mentioned above in 

the results section were reviewed.  It is found that all three tipping bucket values recorded 

precipitation, but the radar data reported a clear sky, or reflectivity values of zero.  Based 

on the agreement between the tipping buckets, these radar data is probably erroneous at 

these two points. 

 In general, the MLP outperforms the Z-R conversion technique used by the 

NEXRAD-III.  The error that arises from the Z-R conversion is that it depends on the size 

of the rain droplets, which is different for every type of rainfall event.  Rainfall droplet 

size may vary between storms or even within a single storm itself [48-53].  It is apparent 
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that the complexity of the MLP makes this data driven model more capable of modeling 

rainfall than the NOAA algorithm. 

 The wrapper feature selection algorithm with the genetic search algorithm 

selected both tipping bucket and NEXRAD data to be included in the model.  It can be 

deduced that the two data sets (NEXRAD and rain gauge) both provide useful input for 

the model, and the strengths of both data systems, high accuracy rain gauge data, and 

locality specific radar data, are utilized.   

 4.11. Conclusion 

 This chapter describes the development of a multilayer perceptron trained with 

NEXRAD-II reflectivity data from a weather station in Davenport, IA and tipping bucket 

rain gauge data from South Amana and Iowa City, IA.  As the model could be synced 

with real time radar and tipping bucket data to provide rainfall estimation in remote areas 

where no instrumentation exists, the resulting models have been named virtual tipping 

buckets (VTBs).  The motivation for a system of VTBs is to provide higher resolution 

precipitation input for hydrological models.  The VTB model was compared with the 

National Oceanic and Atmospheric Association’s (NOAA) algorithm for converting 

reflectivity data to hourly precipitation, which it outperformed. 
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CHAPTER 5. 

CONCLUSION 

 

 This Thesis explores some practical applications of data mining techniques, 

evolutionary computation, and heuristic search methods in the field of hydrology.  Data 

sets considered for study included water quality parameters, discharge, radar reflectivity, 

and tipping bucket.  Statistical analysis, in particular correlation-based analysis, was used 

for the selection of input parameters for the modeling challenges tackles throughout this 

work.   

 Chapter 1 provided background information and a literature review of past 

applications of data mining in hydrology, as well as an introduction to the multilayer 

perceptron (MLP), which was extensively applied throughout this Thesis.   

 The Second Chapter proved data mining and the MLPs competence at making a 

prediction at a different spatial location.  In this data driven model, turbidity at a 

downstream location was predicted with turbidity and discharge data from an upstream 

location, as well as the discharge data from the downstream location.  Turbidity is a 

particularly difficult water quality parameter to predict due to its erratic and fluctuating 

behavior.  The MLP model derived in this chapter makes a turbidity prediction at a gauge 

13 km downstream with an error less than does so with a mean absolute error less than 40 

NTU. 

 Chapter 3 considered multiple water quality parameters, and provided a 

methodology toward a very practical use of data mining; data gap filling.  Two methods 

for filling messing data are presented. One, called Type-1 modeling, considered 
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complimentary water quality parameters, to predict dissolved oxygen concentrations.  

These other water quality parameters were measured concurrently with dissolved oxygen.  

This method may be useful at a location that is missing a dissolved oxygen sensor, but 

has other water quality sensors (i.e. temperature, pH, specific conductivity, etc.).  The 

second methodology introduced utilizes time series data mining, or the use of historical 

dissolved oxygen values to predict the current dissolved oxygen concentration.  Both of 

these methods were used to model the current dissolved oxygen concentration, and alsot 

o make a short term forecast.  The behavior of the model is analyzed when making longer 

term forecast, as well.         

 Chapter 4 combines tipping bucket data and Next Generation Radar data to build 

a virtual tipping bucket (VTB) model, by way of MLP.  The VTB shows superior 

accuracy to the NEXRAD-III product for 15-minute total precipitation, which is used in 

some flood forecasting models.  The model’s robustness is analyzed as it is tested outside 

of its training domain, at two other locations along the Iowa River’s Clear Creek.  The 

results show that the model is highly robust.  Finally, the increased spatiotemporal 

resolution provided by the VTB input shows to have improved the water budget results of 

the SWAT model.   

 Future research will focus primarily on the VTB implementation and 

experimentation within the SWAT model.  The apparent usefulness of such high 

spatiotemporal resolution precipitation data to hydrological models, namely, flood 

forecasting models, makes this an exciting area of research.  Some topics that will be 

studied in the future are (1) optimal siting of VTBs for best hydrological modeling 

results, (2) further robustness testing, such as testing the VTBs performance in other 
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regions farther away with different terrain properties, (3) the VTB’s dependency on 

nearby actual tipping buckets for accurate prediction, and (4) determining the SWAT 

model’s sensitivity to VTB locations, which may provide insight to the soil or hill slope 

properties of these locations.  
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